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Abstract

The stress intensity of three-dimensional corner singularity is computed for the tip of a transverse crack terminating
on the free surface in a laminated composite. Firstly, stress singularity is calculated via finite element method applied for
the angular domain. Then the two-state M-integral is employed, in conjunction with eigenfunction expansion, for com-
puting the stress intensity of the stress singularity. The numerical example demonstrates the effectiveness of the pro-
posed computational scheme.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of stress intensities as well as the stress singularities of singular stress fields around
generic wedges in linear elastic materials has been a major subject in fracture mechanics. In three-dimen-
sional wedges, however, most works did not look into the near-tip stress intensities of the singular stress
field, but concentrated on calculating only the stress singularities. This is partly because three-dimensional
problems are themselves very complicated and partly because any reliable methodology to compute stress
intensities or a fracture parameter like the J-integral for three-dimensional cracks was not available.
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There are many researchers that have discussed the order of stress singularities on three-dimensional
wedge vertices. For example, Koguchi and Muramoto (2000), Picu and Gupta (1997), Ghahremani
(1991), Somaratna and Ting (1986), Bazant and Estenssoro (1979), Benthem (1980, 1977) and others cited
in these papers. Only a few studies have tried to compute the stress intensities as well as the stress singu-
larities. For example, near the vertex of a thin plate with a crack, Nakamura and Parks (1989, 1988) intro-
duced the corner stress intensity which is computed from the three-dimensional local J-integral. However,
this method is applicable only for three-dimensional cracks. Labossiere and Dunn (2001) conducted a series
of very elaborate testing to confirm that the near-tip stress intensities of the singular fields on the bimaterial
free edges are accurately correlated to the initiation of fractures in the specimens. Furthermore, they
showed that the intensities of the singular stresses around the three-dimensional wedge on the interface cor-
ner of the two joining materials are in an excellent correlation with the initiation of the failure at the wedge
vertices of the specimens. Hence, of paramount importance is an efficient and accurate calculation of these
near-tip intensities. Recently Lee and Im (2003) proposed a systematic computational scheme, which is a
method to calculate the near-tip intensities of the singular stress fields around the three-dimensional wedges
with the aid of the two-state M-integral.

The computation of the near-tip intensities of the singular fields may be rather straightforward for the
two-dimensional wedges, and there are many schemes available (see Im and Kim, 2000 and the papers cited
therein, for examples). Among others, the application of the two-state conservation integral (Im and Kim,
2000; Kim et al., 2001; Jeon and Im, 2001; Lee et al., 2001) is known to be a robust method of computation.
Moreover, Lee and Im (2003) showed that the computational scheme using the two-state M-integral is
applicable for three-dimensional wedges by computing the near-tip intensities for the vertex of a thick
plate with a crack, and the bimaterial interface corner, which was considered by Labossiere and Dunn
(2001).

The purpose of the present paper is to extend the computation of the near-tip intensities around three-
dimensional wedges reported in our previous work (Lee and Im, 2003) to the case of anisotropic materials.
A particular emphasis is given to the extension of the approach to the case of the three-dimensional crack
corner of a laminated composite with transverse cracks or on the intersection of transverse cracks with free
surface in composite laminates, which was treated by Somaratna and Ting (1986) and Ghahremani (1991).
A brief review is first stated for the eigenfunction expansion of the solution for three-dimensional elastic
wedges. This is followed by a summary regarding the two-state M-integral. The two-state M-integral is then
applied for calculating the near-tip intensity by utilizing the complementarity relationship for the eigen-
values of the three-dimensional wedges. That is, the path or surface independence property of the two-state
M-integral for a pair of the complementary eigenvalues is exploited to equate its value calculated on the
vanishing near-field surface around the vertex to the value from finite element analysis on the far-field sur-
face. This procedure enables us to calculate the intensity of the singular stress field around the wedge vertex
in an efficient manner.

For the numerical example, we choose a crack corner of a laminated composite with transverse cracks, of
which the stress singularities were discussed by Ghahremani (1991), and Somaratna and Ting (1986). This
example demonstrates the effectiveness and accuracy of the proposed-scheme.

2. Eigenfunction expansion of the solution for three-dimensional elastic wedges
Let the stress and strain components in the spherical coordinates be represented by 1-D arrays as
follows:
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The material constitutive relationship is then given as
g; = Cijgj
where i,j = 1-6, and Cj; is the material stiffness which satisfies C;; = Cj;.

Consider a conical region V, which has its vertex O, the lateral boundary Sy, and the far-field boundary
SE, as shown in Fig. 1. The surface S may be subjected to a traction or displacement boundary condition,
but the lateral surface Sy is free from traction, or subjected to a fixed rigid fixture constraining the displace-
ments to be zero. This represents generic three-dimensional wedges or notches, and the typical examples
include a three-dimensional crack-tip corner created at the intersection vertex between a crack front line
and a free surface, and a three-dimensional bimaterial corner, which is formed by two intersecting free
edges.

For the purpose of analysis for stress singularities at the vertex O, we introduce the eigenfunction expan-
sion (Bazant and Estenssoro, 1979; Benthem, 1977; Lee and Im, 2003) for the elastic solution, of which dis-
placements are zero at the vertex and differentiable in the domain. The displacement fields near the vertex
are given in the separable form as
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where (r, 0, ¢) are the spherical coordinates with the origin at the vertex O, and (u, v, w) are the components
of displacement in (r, 0, ¢) directions, respectively. Values of §,, are called the eigenvalues and their corre-
sponding eigenfunctions are ,(0, ¢; d,), 0,(0, ¢; J,) and w,(0, ¢; J,,). These displacement fields are required
to satisfy the equilibrium equations within the conical region V, and the proper homogeneous boundary
conditions on the lateral surface Sy. Note that the expression above is the generalization of the series expan-
sion in terms of the spherical harmonics (Gurtin, 1972), just as the two-dimensional analogue (Im and Kim,
2000) is the generalization of the series solution in terms of the cylindrical harmonics.
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X

Fig. 1. The configuration at the three-dimensional generic conical vertex.
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When the displacement fields are given by Eq. (2), the stress fields are expressed in the following form,
proportional to 7

gij = Re

Zﬁnr(>n&i/(07¢>5n)1 (3)
o
Hence, the stress singularity occurs at the origin when Re(J,)) < 0. On the other hand, the strain energy is
bounded at the origin and this requires Re(4,) > —3/2 (boundedness of strain energy requires Re(6,) > —1
for two-dimensional wedge vertices). However, Re(J,) < —1 implies that the displacement fields are un-
bounded at r =0, which is unrealistic except for a concentrated load applied at the vertex. Therefore,
we are primarily interested in eigenvalues o, in the range —1 < Re(J,,) <0.

Consider now a small subdomain V' of the entire region V, as shown in Fig. 1 again. The subdomain Vg
is the region enclosed by the vertex, the lateral surface Sy and the surface Sy, which is the concentric surface
r = rn. We choose the sufficiently small 7y so that the near-field expression (2) is valid in the subdomain Vy.
Suppose we cut through the surface Sy to obtain Vy. Then the eigenfunction expansion for the displace-
ment field (2) should satisfy the equilibrium equation inside the cone, the near-field boundary conditions on
Sp. and the appropriate traction condition on Sy. Therefore the principle of minimum potential energy is
written as

oU — / (¢,0u + tpdv + t¢8w)r2 sinfdf0d¢ =0 (4)
SN
where

U= Wi? sin 0drd0d¢
VN
is the total strain energy in the volume V' of the cone, and W is the strain energy density, which is a func-
tion of the strains. The strain components are functions of the displacements and their first derivatives. The

expression (4) of the principle of minimum potential energy is rewritten as (see Somaratna and Ting, 1986;
Ghahremani, 1991 for detail):

0 0
/VN |:{‘//7u - 5 (lpm,)}au + l//m(;6u9 + WWS% + {wav - 5 (Wau,)}&) + lpw”Svﬁ + Ww,,,&)d:

—|—{1//,w - 63 (Ws,) }8w + ¥, 0wy + lp,wd)éwd,} drdfd¢ =0 and
v
Gy = 1, 09 = t()ﬂ Orp = t(/l on SN (5)

where iy = Wi?sin 0 and the subscripts r, 6 and ¢ in u, v and w denote the partial differentiation or the deriv-
ative of displacement like u, = & Furthermore, the comma after  indicates the partial differentiation with
respect to the subject variable, for example, V,, = %, and y,, = % = a(ai%’ etc. Since we assume that the
traction on Sy is denoted by (,, 1, 74), we come to the conclusion that Eq. (5) is a variational statement that
would ensure the satisfaction of the equations of equilibrium in V' and the boundary conditions on Sy
only.

The variational statement of Eq. (5) can be evaluated using the finite element method by discretizing the
concentric spherical surface or the & — ¢ surface with an arbitrary constant value of r, say, r = 1 into finite
elements. The nodal variables are chosen to be the spherical components of the eigenfunctions i,(0, ¢; d,),
0,(0, ¢;0,) and w, (0, ¢; 9,) in Eq. (2). Details for discretizing the Eq. (5) are described in Somaratna and
Ting (1986) and Ghahremani (1991). Thus finite element formulation of Eq. (5) leads to the following qua-
dratic eigenvalue problem:



2714 Y. Lee et al. | International Journal of Solids and Structures 43 (2006) 2710-2722

(K4 6,D+5M)p =0 (6)

where K, D and M are non-symmetric and square matrices and p is the eigenvector of the nodal displace-
ments (see Somaratna and Ting, 1986; Ghahremani, 1991 for detail).

The eigenvalue problem for 8, is quadratic, i.e., of the form (K + §,D 4 6:M)p = 0. We employ the in-
verse iterative method, which is very effectively applied for calculating an eigenvector (Bathe, 1995) together
with the eigenvalue. We utilize the common scheme to convert the quadratic problem to a linear problem
(Ghahremani, 1991) since the inverse iterative method is not directly applicable to the quadratic eigenvalue
problems. The inverse iterative method yields the eigenvector corresponding to the smallest eigenvalue, and
the origin of the J,-plane along the real axis should be shifted to obtain other eigenvalues. Moreover, by
shifting the origin close to the desired eigenvalue, the convergence rate can be greatly improved (Bathe,
1995).

Finite element mesh consists of two-dimensional eight-node isoparametric quadrilateral elements.
Numerical integration is performed using Gaussian quadrature rule on a grid of ng X ng integration
points. In a general anisotropic material the material stiffness matrix C; is functions of 0 and ¢, and it
will display a strong dependence on these terms. Note that the examination of expressions involved in
Eq. (5) or (6) shows that terms like 1/sinf also are present. Although terms like 1/sinf occur because
the strains are obtained in the spherical coordinate system, the integrand of Eq. (5) is not singular as
Eq. (5) is derived from the principle of minimum potential energy. However, this leads to some difficulties
numerically in evaluating the integrals accurately especially in the region near the pole of the coordinate
system where 0 =2 0. To avoid the numerical difficulties in evaluating the integral of Eq. (5) at the poles,
we find the optimal number of integration points and the optimal mesh size by numerical testing
(Somaratna and Ting, 1986).

3. Application of two-state M-integral to three-dimensional wedges

The M-integral is written as (Knowles and Sternberg, 1978):

m —

M = / {I/innl' — tiui,ka + " t,-ul-} ds (7)
N

m
where “S” is a closed surface. Note that W and ¢, indicate the strain energy density and the traction com-
ponents, given as W = %Cijkls,-jakl and #; = g;m;. Furthermore, u; are the displacement components in rectan-
gular coordinates. The constant m is the degree of homogeneity of the strain energy density, that is, 2 for
the linear elastic problem and # is the degree of freedom of the spatial dimension, e.g., n equal to 2 for two-
dimensional domains or to 3 for three-dimensional bodies. Thus the M-integral for three-dimensional linear
elastic bodies is rewritten as

1
M = / {Vinni —t,u”x/—zl‘,u,}dS (l,]: 172,3)
s
Suppose two independent elastic states, ““A’” and “B”’. We consider another elastic state “C”’ obtained by
superposing the two equilibrium states “A” and “B”. Then the above M-integral is written as
M =M* + M® + MAP (8)
where the superscripts “A”, “B”” and “C” indicate the aforementioned elastic states, and M“*®) is the two-

state M-integral for three-dimensional domains, given as

1
MAB) — / {Cijklaésflnpxp — (thup, + P )x, — 3 (truP + But)| dS )
s
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The integral M“™® results from the mutual interaction between the two elastic states “A” and “B”. This
integral is referred to as the two-state M-integral in this context. Note that M™® is the conservation
integral for two equilibrium states since it identically vanishes for the domains with no singularities.

To explain the application of M“®) for generic three-dimensional wedges, we reconsider the conical
domain in Fig. 2, where each of the two surfaces St and Sy, having the outward normal vectors, cuts
through the lateral surface Sy in an arbitrary manner. Recalling that the M-integral is dependent upon
the origin of the coordinate system (x, x;, x3), we take its origin at the wedge vertex. We take the closed
surface St; — St + St where —St means the reverse orientation of the surface Sy, that is, the same area but
with the opposite normal vectors. With no singularities inside the region bounded by these surfaces, we can
show the path independence of the M-integral as

M(Sy) = M(Sy) (10)

where M(S1) = 0 and M(—Sy) = —M(S) have been used. Furthermore, the path or surface independence of
the two-state M-integral M™® is apparent from the above and Eq. (8). That is, we have

M(A'B>(S1) :M(A'B)(SH) (11)

It is well known that the accurate computation of the two-state integral M®) on the far field is possible
only via a regular displacement based FEM in conjunction with the volume integral for three-dimensional
domains (Li et al., 1985; Nikishkov and Atluri, 1987; Moran and Shih, 1987). Now utilizing the domain
integral and going through some manipulation, we can reach the following expressions for three-dimen-
sional bodies:

MAB — f/V ) [C,-jkmal‘.;afmxl — (aﬁufjxj + agul’.}xj) - %(af;u? + o) | g, dV (12)
nm—ri

where V7 and Vyp represent the domains bounded by St and Sy, and Syp and Sy, respectively, and Vi~V
indicates the region bounded by Sy and Sy in Fig. 2. The function ¢(x;, x», x3) is a weight function that
is defined as 1 on St and as 0 on S with smooth variation between Sy and Sy;. Note that the expression

(10) and (11) indicate that M and MAB) are conserved for an arbitrary banded volume Vy—V;.
We are now at the stage of applying the aforementioned two-state M-integral for finding the free con-
stant f§; in the eigenfunction series Eq. (2). Let 5, denote the free constant for the singular stress, which is the

VII 'VI

Fig. 2. The integral path for M-integral and two-state M-integral for three-dimensional wedges.
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first term in Egs. (2) and (3). In the numerical examples to follow in the next section, we will focus on this
term as it represents the near-tip intensity of the singular stress field under a proper normalization of the
eigenfunction. However, the present scheme is equally applicable for finding any higher order eigenfunction
term as well, and so we explain the scheme for an arbitrary free constant ;.

The key idea of calculating f3; is to utilize the path or surface independence property of M*®), as given in
Eq. (11). Firstly, a convenient auxiliary state “B” is chosen, and the elastic field of the wedge under con-
sideration is assigned to “A”. M*P)(S)) is then calculated semi-analytically on the § — ¢ domain with r = 1
of the spherical coordinates. We need numerical integration to evaluate the resulting integral on this do-
main. Next, from finite element analysis we obtain M“®)(Sy)) on the right hand side of Eq. (11) with
the aid of the volume integral expression (12). Then Eq. (11) yields f; and this value must be invariant with
respect to the choice of the auxiliary elastic state as M“*®) is a bilinear functional of the two elastic states
“A” and “B”.

The present procedure now boils downs to the choice of a convenient auxiliary state “B”’. For this we
define a complementary eigenfield for a given eigenstate. Let the complementary eigenvalue ¢; of an arbi-
trary eigenvalue o0; be defined in the M-integral sense as follows (Lee and Im, 2003):

51 +05=-3 (13)

This may be compared with its two-dimensional analogue (Im and Kim, 2000; Jeon and Im, 2001; Lee
et al., 2001), given as

o1+ 0] =-2

As will be verified later, d; constitutes another eigenvalue as long as d, belongs to the eigenvalues for a given
problem. Benthem (1980) discussed the fact that —; — 3 is also an eigenvalue if ¢, is the vertex singularity
of a quarter infinite crack. In general this is true for every eigenvalue and for generic three-dimensional
wedges wherein the M-integral is conserved. We showed numerically this for a quarter infinite crack and
a bimaterial interface corner in another paper (Lee and Im, 2003) and will numerically verify for the given
numerical example in this paper.

Suppose we are interested in finding a free constant f5;. Then, for the auxiliary state we take the elastic
state of the complementary eigenvalue ¢;, which is written as

1 c_ +1~c c

u® ZZRG[ 1r01+1u[(0,¢,51)]

| o S .

v“zﬂRe[ lr‘)'“vl(&d),é,)] (14)
1 c 5¢ ~ ¢

Wwe :ﬂRe[ Irb/“wl(ﬁ,qﬁ,él)]

where the intensity f; of the complementary eigenfield is prescribed arbitrarily. To calculate MAB(S) in
Eq. (11) we substitute the elastic field (2) for the elastic state “A”, and the complementary elastic field (14)
for the elastic state “B”. Then, the following expression is obtained for the two-state integral M“B)(S)
after some algebra (see Lee and Im, 2003 for detail):

M(AB) (Sl) — Z / Re [ﬁnﬁ?rén+57+3G(5m 5?) + ﬁnB;r5n+5§+3G(5m 5;) d9d¢ (15)
o VS

where G(9,,0;) is given by Lee and Im (2003). Note that we take the summation sign outside the integral
symbol by exploiting firstly the path or surface independence property and secondly the fact that each indi-
vidual eigenfunction term in the series expansion (2) is a separate elastic state satisfying the governing equa-
tions and the near-field boundary conditions on Sy in Fig. 1.
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For Eq. (11) with Eq. (15) to be valid, the surface S; of M“*®)(S)) on the left hand side of Eq. (11) should
be located sufficiently close to the vertex O because the expression (2), which has been substituted to obtain
Eq. (15), is legitimate near the vertex. However, in actuality the path or surface independence property of
the two-state M-integral makes M“®)(S)) invariant with respect to the radial coordinate r. This is apparent
if Sy is chosen to be a concentric surface with the radial distance, say 7 from the vertex. If 6, + 6; > —3, we
take 7 to go to zero so that the M-integral contribution from J, may be shown to be zero. On the other
hand, we choose 7 to be an infinitely large value in order to show that the M-integral contribution disap-
pears for 6, + J; < —3 as well. The only non-vanishing contribution originates from the case o, + J; = =3,
and all the other terms disappear, so that M“®)(S}) has no 7 dependence and that the expression (15) in-
volves the integration merely on the 0 — ¢ domain. This implies that the only non-zero contribution to
MAB(S)) occurs from §, = —3 — 0; = d,, that is, from the complementary pair of eigenvalues. This prop-
erty is shown to hold for the two-state J- and M-integral in two-dimensional cases. The right hand side
MA’B’(SII) is now calculated from finite element analysis with the aid of the domain integral representation
(12). Then Eq. (11) will yield the free constant f5;, and so the near-tip stress intensity f; of the singular field if
0 1s chosen for 0.

4. Numerical example: a laminated composite with a transverse crack

For our numerical example, we choose a laminated composite with a transverse crack at the free surface
as shown in Fig. 3. Somaratna and Ting (1986) first computed the stress singularities of this example and
later Ghahremani (1991) verified their results. Somaratna and Ting (1986) considered that each layer is
composed of the same material although the ply angle « of the layers may be different in Fig. 3. The mate-
rial is T300/5208 graphite/epoxy, which is orthotropic. The material properties in the material principal
frame are given as (Somaratna and Ting, 1986):

E; =E2:22 GPa, E3:319 GPa

G12 = G23 = G31 =11.7 GPa

Vo1 = V31 = V3o = 0.28
where E;is Young’s moduli, G;; is shear moduli and v;; is Poisson’s ratio. The orientation of the material axis
is specified with the aid of the ply angle o as shown in Fig. 3. We take this example firstly to compare the

stress singularities with other results, and next to compute the near-tip intensity or free constant S with the
aid of the two-state M-integral. In this work, we choose a cross ply composite, of which the ply angle «; is

0o

| o

<y

2L

A

Fig. 3. The geometric configuration of a laminated composite with a transverse crack.
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equal to 0° for the upper layer and the ply angle o, equal to 90° for the lower layer, where «; and o, are the
counterclockwise orientation of fibers from the z-axis.

At a point sufficiently close to a three-dimensional crack corner the asymptotic solutions should be char-
acterized by the solutions of a quarter infinite crack in a half-space (Nakamura and Parks, 1988; Nakamura
and Parks, 1989). The eigenvalues in the present case are obtained for the vertex of a quarter infinite crack
as shown in Fig. 4. The domain is considered in the half-space, z > 0 and the crack front is along the z-axis.
To compute the eigenvalues for a quarter infinite crack, we consider the surface on the unit sphere onto the
0 — ¢ plane with » = 1 as shown in Fig. 4 and discretize this domain for finite element analysis utilizing the
eight-node plane element. We take the half model to compute the eigenvalues and impose symmetric
boundary conditions on the plane of symmetry ¢ == and traction free conditions on other boundaries.
The domain with 0 < 6 < /2 and 0 < ¢ < & has the interface of two the layers at ¢ = n/2. The domain
was subdivided into 7y x n, elements: ng is the number of elements in the 0-direction and ny the number
of elements in the ¢-direction. Used are the 8 X 16 mesh with eight-node element and 5 x 5 Gaussian inte-
gration points per element. Table 1 shows that the eigenvalues satisfy the complementarity relationship
0, + 0] = —3 in the three-dimensional M-integral sense. We compare the stress singularity with the result
obtained by Ghahremani (1991) in Table 1. The two values of the stress singularity for a [0/90] laminated
composite are in good agreement.

Recall that the three-dimensional crack corner as shown in Fig. 3 has a singularity line of the crack front
as well as the vertex of the crack front line intersecting with the free surfaces. Since we consider a laminated
composite with a transverse crack, the solutions contain also the edge singularity along the crack front line.
While the edge singularity of the three-dimensional crack corner is the well-known inverse square root sin-
gularity, the edge singularity of a laminated composite with a transverse crack varies according to the angle
of the transverse crack. When the direction of the transverse crack is perpendicular to the interface of two
layers as shown in Fig. 3, there are two edge singularities, which are real. Note that Lee and Im (2003)
adopted the singular element along the crack front line to deal the inverse square root singularity of
three-dimensional crack corner. However, we do not utilize the singular element but the regular element
along the crack front line, since the singular element represents only the inverse square root singularity.

To apply the two-state M-integral to a laminated composite with a transverse crack, we cannot directly
utilize the integral path (or surface) for the two-state M-integral as shown in Fig. 2 because a singularity
line exists along the crack front line like the three-dimensional crack corner (see Fig. 4). The contribution

Az

Crack tip

..... : e Layer 2
(o, =90%

T
LT y

Interface Layer 1
X (o, = 0°)

Fig. 4. The domain for computing the stress singularity near the vertex of a transverse crack in a laminated composite.
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Table 1
Complementary pairs of eigenvalues of a laminated composite with a transverse crack (9, + &, = —3)

Eigenvalue
—3.0006
—3.0001
—3.0000
—2.6579
—2.4502
—2.0005
—2.0002
—2.0000

—1.0000
—0.9998
—0.9995
—0.5498
—0.3422
0.0000
0.0001
0.0006

of two-state M-integral calculated on the surface along the crack front line as shown in Fig. 5 is expressed
as (Lee and Im, 2003):
A OuP A OuP p Ou gout 1 A

Aii—[. L_tA i _ l—*t
P P T e P T i gy P T e P

MAPB(S) = lim {W(A*B) p—t
St

p—0

1
y _2z?u¢}pdzd¢

(16)

where S indicates the integral path shown in Figs. 5 and 6. Note that the tube S, does not include the sin-

gular vertex point (r=0), and that the two elastic states “A” and “B” have the edge singularity
u®

A
L are not
0z

iz

and

0.(—1 < d; < 0) along the crack front line z > 0. Taking into account the fact that ag

/
4
_ -
-7 1
// ’,/
S’ -
C
s y

Fig. 5. The modified integral path S; — S, + 7 + S, — S; + S of the two-state M-integral for the three-dimensional crack corner.



2720 Y. Lee et al. | International Journal of Solids and Structures 43 (2006) 2710-2722

x @

Fig. 6. The integral path of the two-state M-integral for the three-dimensional crack corner along the crack front line.

singular along the crack front line z > 0, we see that Eq. (16) goes to zero at the rate of O(p*!*%)) as p
approaches zero. Therefore, we can ignore the contribution of two-state M-integral calculated on the sur-
face along the crack front line.

We consider a laminated composite of cross ply [0/90] under remote tension. Thus we take the half
model using the symmetry. The finite element mesh with 4800 twenty-node solid elements (the number
of DOF ~ 67,000) and the boundary conditions for the symmetric deformation are shown in Fig. 7. The
finite element mesh near the crack vertex is refined due to the presence of the three-dimensional singularity.
Finite element analysis has been carried out using the package code ABAQUS.

Layer 1 S —Saa Interface

Symmetric
condition (u,=0)

Fig. 7. The half finite element model of the [0/90] laminated composite with a transverse crack.
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The stress singularity s and the free constant f for the transverse crack in a [0/90] laminate composite
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Stress singularity J

Free constant ffg

Ghahremani’s result —0.3420 —
The present result —0.3422 2.4614x107°
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Fig. 8. The comparison of the asymptotic solutions with the finite results along the ligament surface (6 = n/2, ¢ =), (a) 0x; (b) 0,,.

The free constant f is obtained via the two-state M-integral. Note that the value of the free constant f
is dependent upon the way that the eigenfunction (&, 7, w) are normalized. For this example, we choose to
normalize the eigenfunctions such that the maximum magnitude of the three spherical components i, # and
w may become 1. Using the free constant 5, in Table 2, we compute stresses from the asymptotic solution
and compare it with the results from the finite element analysis along the line 6 = n/2 and ¢ = = in Fig. 8.
The finite element solution is in a good agreement with the asymptotic solution including only the singular
term in vertex region as shown in Fig. 8.

5. Conclusions

We have examined the singular stress field around the tip of a transverse crack at which the transverse
crack meets with free surface in a laminated composite. Moreover, we compute the singular stress states
near the three-dimensional vertices in this anisotropic body with the aid of the two-state M-integral and
the eigenfuntion expansion. We verify numerically that the eigenvalues of the present three-dimensional
problems satisfy the complementarity relationship, J, + J, = —3, in the three-dimensional M-integral
sense. This relationship and the surface independence of the two-state M-integral are applied for extracting
the near-tip intensity of the singular stress fields for the three-dimensional tip of the transverse crack in the
present laminated composite. The numerical example demonstrates that the present scheme is effective for
computing the intensities of singular stresses near the generic three-dimensional anisotropic wedges in a
laminated composite.
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